Expander Graphs and Gaps between Primes∗

نویسنده

  • Sebastian M. Cioabă
چکیده

The explicit construction of infinite families of d-regular graphs which are Ramanujan is known only in the case d−1 is a prime power. In this paper, we consider the case when d− 1 is not a prime power. The main result is that by perturbing known Ramanujan graphs and using results about gaps between consecutive primes, we are able to construct infinite families of “almost” Ramanujan graphs for almost every value of d. More precisely, for any fixed ǫ > 0 and for almost every value of d (in the sense of natural density), there are infinitely many d-regular graphs such that all the non-trivial eigenvalues of the adjacency matrices of these graphs have absolute value less than (2 + ǫ) √ d− 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expander graphs and gaps between primes * Sebastian

The explicit construction of infinite families of d-regular graphs which are Ramanujan is known only in the case d 1 is a prime power. In this paper, we consider the case when d 1 is not a prime power. The main result is that by perturbing known Ramanujan graphs and using results about gaps between consecutive primes, we are able to construct infinite families of ‘‘almost’’ Ramanujan graphs for...

متن کامل

ON THE SPECTRUM OF DERANGEMENT GRAPHS OF ORDER A PRODUCT OF THREE PRIMES

A permutation with no fixed points is called a derangement.The subset $mathcal{D}$ of a permutation group is derangement if all elements of $mathcal{D}$ are derangement.Let $G$ be a permutation group, a derangementgraph is one with vertex set $G$ and derangement set $mathcal{D}$ as connecting set. In this paper, we determine the spectrum of derangement graphs of order a product of three primes.

متن کامل

Pcmi Lecture Notes on Property (t ), Expander Graphs and Approximate Groups (preliminary Version)

The final aim of these lectures will be to prove spectral gaps for finite groups and to turn certain Cayley graphs into expander graphs. However in order to do so it is useful to have some understanding of the analogous spectral notions of amenability and Kazhdan property (T ) which are important for infinite groups. In fact one important aspect of asymptotic group theory (the part of group the...

متن کامل

Beyond Apollonian Circle Packings: Expander Graphs, Number Theory and Geometry

In the last decade tremendous effort has been put in the study of the Apollonian circle packings. Given the great variety of mathematics it exhibits, this topic has attracted experts from different fields: number theory, homogeneous dynamics, expander graphs, group theory, to name a few. The principle investigator (PI) contributed to this program in his PhD studies. The scenery along the way fo...

متن کامل

Expander Graphs and Property (t)

Families of expander graphs are sparse graphs such that the number of vertices in each graph grows yet each graph remains difficult to disconnect. Expander graphs are of great importance in theoretical computer science. In this paper we study the connection between the Cheeger constant, a measure of the connectivity of the graph, and the smallest nonzero eigenvalue of the graph Laplacian. We sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007